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Abstract 
This paper presents a new animation system initially 
designed for visualization of dynamics simulations in 
science and engineering applications. A hybrid lan-
guage is used to describe the scene objects to be ani-
mated and the scripts and actions that modify the state 
of the objects over time. The system is made up of 
components responsible to compile and execute an 
animation, and render and exhibit the resulting frames. 
Currently, the animation system is being extended to 
support dynamic simulations of rigid and elastic bodies 
in interactive, real-time applications, including games. 
For rigid body simulations, AGEIA PhysX engine is 
used as a component. The paper presents the function-
ality of the main components of the original system 
architecture, introduces the main features of the ani-
mation language and describes how an animation is 
specified and then executed by the system.  
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1. Introduction 
Computational simulation of a physical phenomenon 
consists in the implementation of models that represent 
relevant aspects of the structure and behavior of the 
objects involved in the phenomenon. Simulation can be 
divided in three phases: modeling, analysis and visu-
alization. 

In the modeling phase, or pre-processing, are built 
the geometric, mathematical and analysis models used 
in a simulation. A geometric model describes the posi-
tion, dimension, and shape of an object, among other 
attributes (textures, materials, etc.). A mathematical 
model is a set of differential equations governing the 
physical behavior of an object.  An analysis model is a 
mesh of non-overlapping cells, or elements, resulting 
from a subdivision of the domain and/or the boundary 
of an object. The analysis model is usually required to 
numerically solve the mathematical model for the 
general case of geometry and boundary conditions.  
The analysis phase, or processing, takes as input an 
analysis model and produces as output a (generally 
large) set of numbers that represents the discrete solu-
tion of the mathematical model. The visualization 
phase, or post-processing, transforms the analysis out-
put in graphics primitives that, once rendered, allow a 
more immediate comprehension of the effects of the 
phenomenon being simulated. In dynamic simulations, 
specifically, the analysis is performed over a time 
interval, which is divided in a number of time steps. 

The visualization of analysis results at each time step 
requires, in order to give to the user a view of what 
happens in the simulation over time, the use of anima-
tion techniques. 

The paper introduces an animation system AS ini-
tially designed to be a visualization tool for dynamic 
simulation in science and engineering applications. In 
order to make the system as applicable as possible, the 
authors have developed an animation language AL to 
describe the objects and scripts of an animation  
[Oliveira 2006]. In addition, it is available an applica-
tion programming interface (API) which implements 
classes that represent scenes and their components 
(actors, lights, cameras, etc.), and scripts, actions and 
events. From these base classes, new ones can be de-
rived for specific applications. 

The AL animation language is derived from a gen-
eral-purpose, hybrid (i.e., supports both global func-
tions and data structures as well as object-oriented 
features, like C++) language L [Oliveira 2006] in 
which were added productions to facilitate the creation 
of scene components and the specification of scripts, 
actions and events. The animation system has as com-
ponents an AL compiler and an animation virtual ma-
chine (AVM) that executes the resulting compiled 
bytecode and controls the update cycle of an anima-
tion. Efficiency can be achieved with native methods, 
i.e., methods whose body is implemented in a language 
other than the animation language (usually C++). A 
number of methods in system API are native. 

Although it was possible to extend an existent lan-
guage (such as Java), it has decided to implement a 
proper animation language, since L and its virtual 
machine LVM had already been developed by the 
authors and were available to be used in the animation 
system. Because AL was derived from L and AVM 
from LVM, it was easier to integrate the virtual ma-
chine with the other components of the system; and in 
the future it will be easier to add new features in the 
language, such as behavior rules for actors. 

In the animation system, scripts and actions can be 
used to create new objects and control over time any 
changes on the state of objects in a simulation (not 
only movement, but also appearance, acting forces and 
torques, etc.). In addition, one of the AS components is 
a physics engine responsible for computing the effects 
of constrained dynamics on the objects. The version of 
the system described in the paper uses the AGEIA 
PhysX engine [AGEIA 2006] for collision detection 
and dynamic simulation of rigid bodies only. Cur-
rently, AS is being extended to support interactive, 
real-time dynamic simulation of both rigid and elastic 
bodies. 



 The paper depicts the proposed animation system 
and is organized as follows. Section 2 presents related 
work. Section 3 describes the system architecture. 
Section 4 introduces how to use the animation lan-
guage and the main classes of the system API to spec-
ify an animation. Section 5 gives an overview of the 
internal structure of the AVM and addresses how an 
animation is executed. Section 6 points out the con-
cluding remarks. 
 
2. Related Work 
Script languages constitute a considerable resource to 
governing an animation. Features such as automatic 
memory management, garbage collection and support 
to construction of dynamic data structures, amongst 
others, make script languages a tool that can be used 
beyond the scope of computer animation. An example 
is Lua [Ierusalimschy 2006], which combines simple 
procedural syntax with data description constructs 
based on associative arrays and extensible semantics. 
Lua has been currently used in game development. 

ASAS [Reinolds 1982] is one of the first animation 
language based on actors and scripts. Its goal is to offer 
to the animator the ability to control an animated se-
quence through a script. ASAS is based on LISP and 
introduces specific concepts such as geometric and 
photometric characteristics, transformations operators 
and the data structure of an actor. 

Zeleznik [1991] proposed a system for object-ori-
ented modeling and animation that provides facilities 
of integration with some paradigms of animations. 
Objects can be geometric (actors) and not geometric 
(cameras, lights, etc.) and exchange messages among 
them. The list of messages of an object determines its 
behavior and its variable parameters over time. This 
list can be modified by the animator or another object, 
featuring interactions actor-actor and actor-animator; a 
message is abstract since the object is accountable to 
define itself how it will be affected by a message. 

Inprov [Perlin and Goldberg 1996] is an authoring 
system for scripting interactive actors in virtual worlds. 
It consists of two subsystems. The first one is an ani-
mation engine that uses procedural techniques to en-
able animators to create layered, continuous, non-re-
petitive motions and smooth transitions between them. 
The second subsystem is a behavior engine that en-
ables animators to create sophisticated rules governing 
how actors communicate, change, and make decisions. 
The combined system provides an integrated set of 
tools for assign the “minds” and “bodies” of interactive 
actors. An Inprov actor can be doing many things at 
once, and these simultaneous activities can interact in 
different ways. The animator can place actions in dif-
ferent groups, and these groups are organized into a 
“back-to-front” order. Actions in the same group com-
pete with each other and each action possesses some 
weight (global actions are located in the rear groups 
and local ones in the front groups). Different scripts 
can run in parallel and can be ordered on the same 

temporal referential by using instructions like wait n 
seconds. 

Formella [1996] present a complete description of a 
simple animation language named AniLan. Parameters 
of objects to be animated can be changed over time 
with the help of actions, events and cues. AniLan rely 
your own animation model. The kernel of the model is 
an animation graph [Braun 1995], which represents the 
interactions of the objects and uses the dimensions 
library (parameters of an animation that have a type, 
which superposition and casting are two basic features) 
and the function library. An evaluation kernel that 
interprets the graph is used by an interface to produce 
the required values for the parameters at a certain in-
stant of time or over a certain period of time. The 
graph holds all functions and parameters to be ani-
mated. A property of the model is that it is not possible 
to perform simulations, collision detection [Snyder et 
all 1993] or iteration directly with the graph.  

More recently, a scenario language to orchestrate 
virtual world evolution was proposed by Devillers and 
Donikian [2003], which allows the description of sce-
narios in a hierarchical manner and their scheduling at 
simulation time. The language contains instructions 
such as if, switch, repeat until, random choice, 
wait, which are executed inside a time-step. It also 
contains more specific instructions (waitfor, each-
time, aslongas, every) that spend more than one 
time-step to be finished and can run in parallel during 
the execution of the scenario they belong to. All those 
instructions can be composed in a hierarchical manner. 
To manage actors, the language offers also specific 
instructions to specify the interface of an actor, and to 
reserve and free actors. 
 
3. System Architecture 
The architecture of the proposed animation system is 
defined by the following components: animation lan-
guage compiler, AVM, animation file linker, and ani-
mation file viewer. 

The animation language compiler (ALC) derives 
from L compiler. It takes as input files containing the 
AL specifications of one or more scenes to be animated 
(scn files), and produces as output the corresponding 
animation object files (oaf files). These ones contain 
bytecode streams that are loaded and interpreted by the 
AVM. An animation code typically creates scenes and 
starts scripts and actions that modify the state of a 
scene over time. Scenes are animated sequentially by 
the system in order they are started; the scene being 
animated at a given time is called current scene. 

During a simulation the AVM renders frames of the 
currents scene that can be packed by the animation file 
linker in order to produce movies in a number of for-
mats (avi, mpeg, flic, among others), which can be 
displayed by the animation file viewer. For (preview 
of) animations directly exhibited in graphical windows 
these components are not used and not discussed here. 



The AVM is the most important component of the 
animation system. It is made up of the subcomponents 
illustrated in the UML component diagram in Figure 1. 

 
Figure 1: Architecture of the AVM. 

 The kernel of the AVM is the L virtual machine. 
This one is made up of the bytecode interpreter, the 
native interface and the object memory. 

The interpreter “executes” object code, i.e., the “in-
structions” represented by the bytecodes generated by 
the ALC. There are instructions to create new objects, 
invoke methods, handle exceptions, etc. Native meth-
ods are executed with support of the native interface 
(NI). When a native method is invoked, the LVM 
pushes onto native stack the arguments passed to the 
method and also a reference to the NI object, then calls 
the native function that implements the method, and 
pushes the return value, if any, onto the LVM stack. A 
native code can use the NI object to access many of the 
functionalities of the LVM, such as to create objects, 
invoke methods, etc. The object memory is the place 
where live all objects created by an application. When 
an object cannot be reached by the LVM, a mark and 
sweep garbage collector automatically reclaims the 
memory used by the object. 

The controller is the component responsible to or-
chestrate the execution of the scripts and actions of an 
animation. The total duration time of a simulation is 
divided in a discrete number of time steps named ticks. 
At each one tick the controller determines which pieces 
of (scripts and actions) code have to be executed by the 
LVM in order to update the state of the current scene. 
At the end of the update cycle, the controller invokes 
the physics engine to perform the physics simulation. 

For a positive number of ticks called render resolu-
tion, the renderer takes the current scene and renders a 
scene frame. The current implementation of the system 
uses a simple, OpenGL based renderer. 

The animation system is entirely implemented in 
C++. The current version runs on Windows. 
 
4. Specifying an Animation 
An animation is specified in the animation language 
which is an extension of the L language. The syntax of 
L is similar to C++ in some aspects and to Java in 
others. In common, the language supports selection 
(if-else, switch), iteration (for, while, do), con-

trol transfer (break, continue, return), exception 
handling (throw, try-catch), and expression state-
ments. Like C++ and Java, L is strongly typed. Besides 
primitive types (int, long, float, char, bool), the 
language allows the definition of array types and object 
classes. Classes can declare inner classes, constructors, 
attributes, properties, and methods. In addition, L also 
supports multiple virtual inheritance, generic classes, 
operator overloading, virtual methods, and friend 
classes, among other features. 

A complete L grammar description can be found in 
[Oliveira 2006]. Following, a partial, simplified syntax 
of class declaration. The symbols *, +, e ? denote zero 
or more, one or more, and optional, respectively. Ter-
minals are written in boldface. 
ClassDeclaration: 

  modifier* class Name BaseClassList? 
  ClassBody  
BaseClassList: 

  : Name (, Name)*  
ClassBody: 

  { (modifier MemberDeclaration)* }  
MemberDeclaration: 
  CtorDeclaration 
  | MethodDeclaration 
  | FieldDeclaration 
  | PropertyDeclaration 

CtorDeclaration: 
  constructor ( ExpressionList? ) CtorInit? 
  (Block | ;) 

CtorInit: 
  : BaseClassInit (, BaseClassInit)* 

BaseClassInit: 
  Name ( ExpressionList? ) 

FieldDeclaration: 
  Type Name (, Name)* ; 

MethodDeclaration: 
  Type Name ( ExpressionList? ) 

  (Block | ;) 

Pr claraopertyDe tion: 
property ype Name    T

  { (read = Name)? (write = Name)? } 

A property is an instance member accessed like an 
attribute, but whose value is handled by a getter and/or 
a setter method. If the property is used as a rvalue in an 
expression, then the getter is invoked, otherwise the 
setter is invoked. A property can be read-only (without 
setter) or write-only (without getter). The other pro-
ductions are straightforward. 
 
4.1 Scene and Scene Component Classes 

The entities of an animation are objects of L classes 
which are grouped together into the animation system 
API. The classes that represent a scene and its main 
components are depicted in the UML class diagram in 
Figure 2 and commented following. 

 A Scene object is a container of actors, lights, and 
cameras (due to space limitation the classes Light and 
Camera are not commented here). An Actor object is 
defined by a geometric model and a body. A geometric 
model is an instance of the class Model and describes 
the pose, shapes and dimensions of an actor. It is used 



by the renderer to synthesize a picture of the actor and 
defined by a triangle mesh, vertex normals and vertex 
texture coordinates. 

 
Figure 2: Scene and scene components classes. 

An actor body is an object of a class derived from 
the abstract class Body and defines the physical prop-
erties of an actor. The class RigidBody is a concrete 
class that encapsulates the specific properties and 
methods used by the physics engine for dynamic 
simulation of rigid bodies. The geometry of a rigid 
body is defined by a collection of Shape objects, such 
as spheres and boxes, which are used by the PhysX to 
compute the contact points among actors. In general 
the body geometry is simpler than model geometry, but 
they can be the same. Figure 3 illustrates on the left the 
body shapes and on the right the geometric model of a 
truck. 
 

 
Figure 3: Shapes and model of an actor. 

In order to read the examples at the end of this sec-
tion, the classes Actor and RigidBody are partially 
listed below. Dots indicate that details are omitted 
class Actor: SceneComponent 
{ 
  public: 
    property String name { ... }; 
    property Body body { ... }; 
    property Model model { ... }; 
    ... 
} 

class RigidBody: Body 
{ 
  public: 
    property Vector3D position { ... }; 
    property Quaternion orientation { ... }; 
    property Vector3D linearVelocity { ... }; 
    property Vector3D angularVelocity { ... }; 
    property float mass { ... }; 
    property Tensor3D inertia { ... }; 
    property Vector3D centerOfMass { ... }; 
    property List<Shape> shapes { ... }; 
 
    void addForce(Vector3D); 
    ... 
} 

The class Scene is commented in the next subsec-
tion, since a scene is also a sequencer. 
 
4.2 Sequencers and Event Classes 

There are objects called sequencers that, in conjunction 
with the physics engine, are responsible to define the 
changes in a scene during an animation. A sequencer is 
any set of activities that, when executed sequentially or 
in parallel, can modify the state of one or more objects 
of a scene over time. A sequencer can control the 
movement of actors, lights, and cameras; change model 
attributes such as colors and textures; create new scene 
components; apply forces and torques on rigid bodies; 
start other sequencers; etc. A sequencer is an object of 
a class derived from the abstract class Sequencer, 
shown in the UML class diagram in Figure 4. The 
interface of Sequencer is listed below. 
abstract class Sequencer: SyncObject 
{ 
  public: 
    abstract void start(); 
    abstract void exit(); 
 
    property float time { read = getTime }; 
    float getTime(); 
} 

The method start() begins the execution of the ac-
tivities of a sequencer. All the started sequencers will 
be running in parallel in AVM. The method exit() 
terminates the execution of a sequencer. The read-only 
property time, as well as the method getTime(), 
gives the time in milliseconds since a sequencer was 
started. 

 
Figure 4: Sequencers and event classes. 

 A sequencer can be either a script or an action. A 
script is an object of a class derived from the abstract 
class Script: 
abstract class Script: Sequencer 
{ 
  public  :
    void start(); 
    void exit(); 
 
    int waitFor(float); 
    int waitFor(SyncObject, float = -1); 
    int waitFor(SyncObject[], float = -1); 
 
  protected: 
    abstract void run(); 
} 

Script overrides the methods start() and exit() 
inherited from Sequencer. When a script is started, 
the controller instructs the LVM to invoke the method 



run(), which must be override in derived classes. The 
method implements the activities to be executed by a 
specific script. The state of a script being executed by 
LVM is defined as RUNNING. A script terminates when 
run() returns or when exit() is invoked; in both the 
cases, the state of the script becomes TERMINATED. 

For a RUNNING script, the code in run() will be 
entirely executed by the LVM in exactly one tick, i.e., 
during one update cycle (in terms of animation time, it 
means instantaneously). However, if one of the meth-
ods waitFor() is invoked from run(), then the script 
execution is suspended by the controller until the con-
dition specified by the arguments passed to the method 
is satisfied. The state of  a suspended script is defined 
as WAITING. A script can wait for a number of update 
cycles until either a given timeout in milliseconds 
expires, or one or more synchronization objects be-
come signaled. As soon as the condition is verified, the 
controller instructs the LVM to resume execution of 
the method run() in the next instruction after the 
waitFor() invocation. The state of the script turns 
back to RUNNING. 

A synchronization object is one of a class derived 
from abstract class SyncObject. It represents a signal 
being expected by a WAITING script in order to have its 
execution resumed by the LVM. A synchronization 
object can be in one of two states at any time: signaled 
and not signaled. As shown in Figure 4, sequencers are 
synchronization objects. When a sequencer is created 
and RUNNING, it is not signalized.  As soon as a se-
quencer terminates, it becomes signaled. Therefore, a 
script can wait for other scripts (and actions) to be 
terminated before to proceed its execution. 

There are other two types of synchronization ob-
jects: events and contact reports. An generic event is an 
instance of the class Event: 
class Event: SyncObject 
{ 
  public: 
    void setSignaled(); 
} 

The method setSignaled() is invoked to manually 
set the state of an event as signaled.  

A contact report is an internal event signaled by the 
AVM whenever a contact between any two actors is 
detected. The event is an instance of ContactReport: 
class ContactReport: SyncObject 
{ 
  public: 
    static ContactReport getInstance(); 
    property List<Contact> contacts { ... }; 
} 

An animation code should not create a contact report 
object. The only instance that should be used is main-
tained by the AVM and whose reference can be ob-
tained with the static method getInstance(). The 
object maintains a list with the contact points detected  
at the current tick. Each contact point is represented by 
a Contact object (see the second example at the end 
of this section). 

An action is a sequencer of a class derived from the 
abstract class Action: 
abstract class Action: Sequencer 
{ 
  public: 
    void start(); 
    void exit(); 
 
    constructor(float = -1); 
    property float lifetime { ... }; 
 
  
    void init(); 

protected: 

    void update(); 
    void finalize(); 
} 

An action has as a property its lifetime in milliseconds, 
which is passed as argument to the constructor (a 
negative real number is considered as infinite). Action 
overrides the methods start() and exit() inherited 
from Sequencer. The activities of an action are coded 
in the methods init(), update(), and finalize(), 
which can be override in derived classes. The init() 
method implements an initialization code for the action 
and is executed once by the LVM as soon as the action 
is started. Just after the invocation of start() but just 
before the invocation of init() the state of an action 
is set to INITIATED. (Note that initialization code can 
be also written in a constructor, but in this case it will 
be executed after the creation of the object). Once it is 
initiated, the state of an action is  set to RUNNING. 

At each one tick the controller decrements the value 
of the property lifetime of a RUNNING action. If it 
results a positive number, then the controller instructs 
the LVM to invoke the method update() of the ac-
tion. An action terminates when its lifetime is zero or 
when exit() is invoked. In this case the action state is 
TERMINATED and the method finalize() is invoked. 
 Actions are used to define activities that continually 
change over time and must be executed in each update 
cycle, while scripts are used to define a linear sequence 
of synchronized activities that must be executed just 
the once in a priori unknown period of time. 

A scene is also a script, in the sense that it can be 
started and define a sequence of activities which can be 
executed by its components. The interface of Scene is:  
class Scene: Script 
{ 
  public: 
    static e urrent(); Scen getC
    constructor(float = -1); 
 
    property float totalTime { ... } 
    property List<Actor> actors { ... }; 
    property Camera camera { ... }; 
    ... 
 
  protected: 
    void run(); 
} 
 
4.3 The Animation Language 
It is possible to use the L language together the API to 
entirely specify an animation. However, it is better do 
it with the animation language. AL has extensions that 



makes easier to create a scene, put components into a 
scene, and define sequencers. The main features of the 
language are discussed below. 

 AL introduces properties blocks. It is easier to 
explain it with an example. Let be the following code 
fragment: 
RigidBody body = new RigidBody(); 
 
body.position = <0,0,0>; 
body.orientation = new Quaternion(0,<1,1,1>); 
body.mass = 50; 
body.centerOfMass = <0,0,1>; 
 
Actor actor = new Actor(); 
 
actor.name = ″actor1″; 
actor.body = body; 

The code creates a new rigid body and sets its position, 
orientation, mass, and center of mass. The rigid body is 
assigned to a new actor named actor1. Note that a 3D 
vector can be defined by an <x,y,z> expression, 
where x, y, and z are float expressions. Using a 
properties block, the code above can be rewritten as: 
Actor actor = new Actor() 
{ 
  name = ″ or1″; act
  body = new RigidBody() 
  { 
    position = <0,0,0>; 
    orientation = new Quaternion(0,<1,1,1>); 
    mass = 50; 
    centerOfMass = <0,0,1>; 
  }; 
}; 

A property block is an expression defined as an expres-
sion followed by a block containing a list of assign-
ment expressions. The grammar production is: 
PropertyBlock: 
  Expression { (AssignementExpression;)* } 
The value of Expression must be a non-null reference 
to an object O, and the lvalue of each assignment ex-
pression in the block must be a property or an attribute 
of O. The value of a property block expression is itself 
a reference to O. 

A variant of the property block can be applied to 
add elements into a collection. To the AVM a collec-
tion is any object whose class derives from abstract 
class Collection, such as Vector and List. Let be 
the code fragment: 
Scene scene = new Scene(); 
Actor actor; 
 
// create actor1 and add it into the scene 
actor = new Actor(); 
actor.name = ″ or1″; act
actor.body = new RigidBody(); 
... 
scene.actors.add(actor); 
// create actor2 and add it into the scene 
actor = new Actor(); 
actor.name = ″actor2″; 
actor.body = new RigidBody(); 
... 
scene.actors.add(actor); 

Using property blocks and the add-into-collection 
variant, the code can be rewritten as: 

Scene scene = new Scene() 
{ 
  actors 
  { 
    // create actor1 and add it into the scene 
    new Actor() 
    { 
      name = ″ or1″; act
      body = new RigidBody() 
      { 
        ... 
      }; 
    }; 
    // create actor2 and add it into the scene 
    new Actor() 
    { 
      name = ″ or2″; act
      body = new RigidBody() 
      { 
        ... 
      }; 
    }; 
  }; 
}; 

An add-into-collection variant is an expression defined 
as an expression followed by a block containing a list 
of expressions. The grammar production is: 
AddIntoCollectionVariant: 
  Expression { (Expression;)* } 
The value of the first Expression must be a non-null 
reference to an object O which is expected to be a 
collection of objects of a type T. The value of each 
expression in the block must be a reference to an object 
of the T type. The value of an add-into-collection ex-
pression is itself a reference to O. 

Property blocks and the add-into-collection variant 
give a cleaner appearance to descriptive parts of an 
animation code, like in PSCL [2006]. 

Another extension of AL is anonymous classes. For 
example, suppose that the user wants to declare a new 
class derived from Scene, override the script method 
run(), and starts a single instance, i.e., a singleton, of 
the class. The code in L is: 
class MyScene: Scene 
{ 
  protected: 
    void run() 
    { 
      // create some actors 
      // starts some scripts and/or actions 
      ... 
    } 
} 
 
(new MyScene()).start(); 
If only one instance of MyScene is created, then the 
explicit declaration of the class can be avoided. The 
following AL code creates and starts a singleton of an 
anonymous class derived from Scene: 
new Scene() class 
{ 
  protected: 
    void run() 
    { 
      // create some actors 
      // starts some scripts and/or actions 
      ... 
    } 
}.start(); 



In the example above, the keyword class after the 
new expression denotes that a new instance of a class 
derived from Scene will be created. The anonymous 
class body follows the keyword class. The message 
start() is then sent to the singleton. The syntax is: 
AnonymousNewExpression: 
  new Name ( ExpresionList? ) class ClassBody 

In addition, AL declares the following keywords: 
• run: when used in the body of a class derived 

from Script denotes the header of the method 
run(). 

• init, update, and finalize: when used in the 
body of a class derived from Action denote the 
headers of the methods init(), update(), and 
finalize(), respectively. 

If an action has to execute some activities at given 
instants of its lifetime, a switch_time statement can 
be used inside the update block, as illustrated below. 
class MyAction: Action 
{ 
  constructor(float lifetime); 
 
  init 
  { 
    // start code comes here 
  } 
  update 
  { 
    switch_time(time) 
    { 
      from 0 to 2000: 
       // do anything 
      at 5000: 
       // do anything 
      from 1000: 
       // do anything 
      to 7000: 
       // do anything 
      from 1000 for 6000: 
       // do anything 
      for lifetime: 
       // do anything 
    } 
  } 
  finalize 
  { 
    // exit code comes here 
  } 
} 
A switch_time statement takes as argument a float 
expression, typically the local time of the action or the 
scene total time. In the statement block, code can be 
associated to time intervals which are specified by at, 
from-to, from, to, from-for, and for conditions. 
The AMV executes the code of all conditions that are 
satisfied at the current updated cycle. 

 To create and start the MyAction one writes: 
/* The MyAction constructor is invoked. 
   The argument is the action lifetime. */ 
Action action = new MyAction(10000); 
// The MyAction init block is invoked. 
// The update block is executed at each tick. 
action.start(); 

As an alternative, a start expression can be used to 
create and immediately start a sequencer: 
Action action = start MyAction(10000); 

4.4 Examples 

This section is concluded by presenting two examples 
that illustrates how to create very simple scenes, 
scripts, and actions. The first one is a scene whose 
initial state is defined by a stack of box-shaped actors 
on a ground plane and a sphere on the stack. When the 
scene is started, the gravity acts and the sphere falls 
over the stack. Next, the script shoots twenty new 
spheres in the direction of projection each two seconds. 
In parallel, an action is started to rotate the camera 
around the scene and to create a new stack of boxes at 
a given instant. Figure 5 shows some frames. 
// Add a ground plane into scene. 
void createGroundPlane(Scene scene) 
{ 
  ... 
} 
// Add a stack of boxes into scene. 
void createBoxStack(Scene scene) 
{ 
  ... 
} 
// This is the animation main function. 
void main() 
{ 
  // Create a scene and start its script. 
  start Scene() class    
  { 
    /* 
     * Create an actor whose body is a sphere. 
     * Since the actor does not have a model, 
     * its body is used for rendering. 
     */ 
    Actor createSphere(Vector3D position) 
    { 
      Actor sphere = new Actor() 
      { 
        body = new RigidBody() 
        { 
          shapes 
          { 
            new SphereShape() 
            { 
              globalPosition = position; 
              radius = 1; 
            }; 
          }; 
        }; 
      }; 
 
      actors.add(sphere); 
      return sphere; 
    } 
 
    // This is the script. 
    run 
    { 
      // Create initial actors (Figure 5(a)). 
      createGroundPlane(this); 
      createBoxStack(this); 
  createSphere(<0,6,0>); 
 
  // Start an action to move the camera. 
      start Action(this, 42000) class 
      { 
        Scene s; 
 
        constructor(Scene s, float lifetime): 
          Action(lifetime) 
        { 
          this.s = s; 
        } 
 
        update 
        { 
          // Rotate the camera continuously. 
          s.camera.azimuth(0.5); 
          /* 
           * The switch_time statement below 
           * is not really necessary and can 
           * be replaced with an if statement. 
           */ 



          switch_time(time) 
          {     
            /* 
             * Create a new stack at time 32s 
             * (Figure 5(e)). 
             */ 
            at 32000: 
              createBoxStack(s); 
          } 
        } 
      }; 
 
      for (int ball = 0; ball < 20; ++ball) 
      { 
        waitFor(2000); 
        createSphere(s.camera.position) 
        { 
          linearVelocity = s.camera.DOP * 60; 
        } 
      } 
    } 
  }; 
} 
 

  
                      (a)                                              (b) 

  
                      (c)                                              (d) 

  
                      (e)                                              (f) 

Figure 5: Frames of example 1. 

The next example demonstrates how to use the 
contact report event. The class CheckContact below 
defines a script that, once started, waits until a contact 
between a1 and a2 occurs. 
class CheckContact: Script 
{ 
  public: 
    Actor a1; 
    Actor a2; 
 
    constructor(Actor a1, Actor a2) 
    { 
      this.a1 = a1; this.a2 = a2; 
    } 

  run 
  { 
    ContactReport r; 
 
    for (r = ContactReport::getInstance();;) 
    { 
      waitFor(r); 
      for (Contact c: r.contacts) 
        if (c.isBetween(a1, a2)) 
          return; 
    } 
  } 
} 

The script of the scene is very simple. It creates forty 
times a sphere and a box, applies a force on the sphere 
in order to put it in collision route with the cube, and 
waits for the contact. In parallel, an action moves the 
camera in the direction of the positive z-axis. Figure 6 
shows some frames. 
// This is the animation main function. 
void main() 
{ 
  /* 
   * Create a scene and start its script. 
   * The scene lifetime is 42s. 
   */ 
  start Scene(42000) class    
  { 
    constructor(float totalTime): 
      Scene(totalTime) 
    {} 
 
    // Add a sphere into scene. 
    Actor createSphere(Vector3D position) 
    { 
      ... 
    } 
    // Add a box into scene. 
    Actor createBox(Vector3D position) 
    { 
      ... 
    } 
 
    // This is the script.  
    run 
    { 
      // Create the scene ground. 
      createGroundPlane(this); 
      // Start an action to move the camera. 
      start Action(camera) class 
      { 
        Camera c; 
 
        constructor(Camera c) 
        { 
          this.c = c; 
        } 
 
        update 
        { 
          c.pan(<0,0,10>); 
        } 
      }; 
 
      float z = 0; 
 
      for (int i = 0; i <= 40; i++, z += 3) 
      { 
        // Create a sphere and a box. 
        Actor s = createSphere(<2,0,z>); 
        Actor b = createBox(<-2,0,z>); 
 
        // Apply a force on the sphere. 
        s.body.addForce(<-550,0,0>); 
        /* 
         * Wait for a contact between the 
         * sphere and the box and repeat. 
         */ 
        waitFor(start CheckContact(s, b)); 
      } 
    } 
  }; 
} 
 



  
                      (a)                                              (b) 

  
                      (c)                                              (d) 

  
                      (e)                                              (f) 

Figure 6: Frames of example 2. 
 
5. Executing an Animation 
The execution of an animation involves the collabora-
tion of all components of the AVM, as summarized in 
this section. 

The controller is the component responsible for or-
chestrating the steps of the execution. For that, it owns 
a set of script context queues and action queues. An 
element of a script context queue contains a reference 
to an active (i.e., RUNNING or WAITING) script, and a 
Context object related to the method run() of the 
script. A context is a structure with all information is 
needed to the LVM to be able to resume the execution 
of a function from a specific point in the object code. 
This includes the address of the next instruction to be 
executed and a reference to the function stack frame, 
among others. The controller has two context script 
queues: 

• RSQ, which has an element for each RUNNING 
script started in the animation; 

• WSQ, which has an element for each WAITING 
script. An element of WSQ also maintains the re-
mainder sleeping time and a list of references to 
the synchronization objects for which a script is 
WAITING for. 

An element of an action queue contains a reference 
to an action. There are three action queues: IAQ, UAQ, 

and FAQ, which have an element for each INITIATED, 
RUNNING, and TERMINATED actions in the animation, 
respectively. In addition, the controller owns a list SEL 
of references to the signaled synchronization objects at 
the current tick. The steps of execution of an animation 
are outlined below. 

Step 0. The AVM loads the object animation file 
and looks for the main function. If this one is not 
found, the AVM throws an exception that aborts the 
execution of the program. Otherwise, the AVM asks to 
LVM to begin the execution of the main function byte-
code. 

Step 1. The execution proceeds until the method 
start() of a scene is invoked. The first instruction 
generated by AL compiler for every method that starts 
a script is halt, which is interpreted by the LVM as an 
order to suspend the execution of the current function. 
Since a Scene is a Script, the LVM stops. Next, the 
controller creates a new script context queue element 
containing a reference to the started scene and the  
LVM current context, and puts it into RSQ. The scene 
becomes the current scene and the current tick is set to 
zero. If another type of sequencer except a Scene is 
first started, then the AVM throws an exception that 
aborts the execution of the program. At least a scene 
should be started from the main function. 

Step 2. While the total time of the current scene is 
not zero and the context script and action queues are 
not empty, the controller carries out the update cycle 
for the current tick, steps 3 to 9. 

Step 3. For each element S into RSQ, the controller 
asks to LVM to resume from the corresponding script 
context. As a consequence, the LVM executes the 
method run() of the corresponding RUNNING script, 
which can start others scripts and actions and signal 
events. If a new script is started, then the LVM halts 
and a new element for the new script is created and put 
into RSQ. If a new action is started, start() of Action 
puts into IAQ a new action queue element containing a 
reference to the new action. If an event is signaled, 
setSignaled() of Event adds into SEL a new ele-
ment containing a reference to the event. The LVM 
continues the execution of run()until: 

• the method returns or exit() is invoked. In this 
case, the script is TERMINATED and the element 
S is removed from RSQ; 

• a method waitFor() is invoked. As in the case 
of a method start(), the first instruction of a 
waitFor() halts the LVM. Next, the controller 
removes S from RSQ and puts into WSQ a new 
element containing a reference to the script, the 
current context, and, as given by the arguments 
passed to waitFor(), the timeout and the list of 
references to the synchronization objects for 
which the script will be WAITING for. 

Step 4. For each element S into WSQ, the controller 
verifies if the timeout is zero or the synchronization 
objects for which the corresponding script is WAITING 



for are in SEL. If it is true, then S is removed from WSQ 
and a new element for the script is put into WSQ, i.e., 
the script wakeups and turns back to the RUNNING 
state. Otherwise, the timeout is decremented. 

Step 5. For each element A into IAQ, the controller 
asks to the LVM to execute the method init() for the 
corresponding action. A is moved from IAQ to UAQ. 

Step 6. For each element A into UAQ, the controller 
verifies if the lifetime of the corresponding action is  
not zero. If it is true, the controller asks to the LVM to 
execute the method update() for the action, and up-
dates the properties time and lifetime. Otherwise, 
or if exit() was invoked from update(), A is moved 
from UAQ to FAQ.  

Step 7. For each element A into FAQ, the controller 
asks to the LVM to execute the method finalize() 
for the corresponding action. A is removed from FAQ. 

Step 8. The controller clears SEL and asks to the 
physics engine to perform the simulation for the time 
step corresponding to the current tick. If any contacts 
among rigid bodies are detected, the controller sets  the 
state of ContactReport as signaled and adds a new 
element for the event into SEL. 

Step 9. The total time of the current scene is up-
dated and the current tick is incremented. If it is a mul-
tiple of the render resolution, the controller asks to 
renderer to make a scene frame, which, depending on 
the application, can be immediately exhibited or sent to 
the animation file linker. 
 
6. Concluding Remarks 
This paper presents a new programming environment 
for visualization of dynamic simulation of rigid bodies. 
An animation is specified in an animation language 
(AL) in terms of objects that represent a scene and its 
components and sequencers and events. A sequencer is 
an control object responsible to changes scene states 
over time. A script is a sequencer representing a linear 
sequence of activities that must be executed just the 
once, from begin to end. Scripts can synchronize each 
other and wait for events to be signaled. An action 
represents a sequence of activities that must be con-
tinuously executed each update cycle. 

 An animation is executed by an animation virtual 
machine (AVM). The physics engine is the component 
of the AVM responsible for dynamic simulation. The 
version of the animation system addressed in the paper 
uses the AGEIA PhysX for rigid body simulation. Due 
to complexity of the system and space limitations was 
not possible to give details how the PhysX is integrated 
to AVM. 

Possible extensions of the system include: a com-
puter-human interface for graphical description of 
animations; extension of the language to support be-
havior rules for characters; just-in-time translation of 
part of the bytecode of an animation to native code in 

order to improve execution speed; use of graphics 
processing unit (GPU) for physics. Currently the au-
thors are developing a new physics engine to be inte-
grated to the programming environment for real-time, 
interactive simulation of rigid and elastic bodies. 
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